Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles.
نویسندگان
چکیده
Total counts in soils are usually determined using fluorescent dyes, such as DAPI or Sybr green, due to fluorescence enhancement if they are bound to nucleic acids. Unfortunately, these commonly used dyes stain soil particles as well. Therefore, besides fluorescence enhancement, sufficient spectral differentiation is also required. We present a new procedure that overcomes the problems of visualising bacteria on surfaces in soil and avoids the separation of soil particles to a large extent. Spectral differentiation between bacteria and soil matrix is achieved by using Sytox green and a suboptimal excitation wavelength. Bacteria exhibit a bright green fluorescence, while soil particles fluoresce blue or red. Slight homogenisation and sedimentation of the sand and coarse silt that were too big for microscopic investigations were the only separation steps required. We compared the proposed Sytox green staining with Sybr green staining. The recovery of Sybr green-stained cells amounted to 38%, whereas in samples stained by Sytox green 81% of the spiked cells were counted. Sytox green can also be combined with fluorescence in situ hybridisation (FISH) using deep red dyes such as Cy5.
منابع مشابه
Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria.
High background fluorescence and unspecific staining hampered the epifluorescence enumeration of bacteria in 45% of the tested soil and sediment samples with 4',6-diamidino-2-phenylindole (DAPI) and polycarbonate membrane filters. These problems of the determination of total cell counts can be circumvented by using green fluorescent high-affinity nucleic acid dyes and aluminum oxide membrane fi...
متن کاملBacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.
A fluorescent nucleic acid stain that does not penetrate living cells was used to assess the integrity of the plasma membranes of bacteria. SYTOX Green nucleic acid stain is an unsymmetrical cyanine dye with three positive charges that is completely excluded from live eukaryotic and prokaryotic cells. Binding of SYTOX Green stain to nucleic acids resulted in a > 500-fold enhancement in fluoresc...
متن کاملDecolorization of Malachite Green Dye Solution by Bacterial Biodegradation
Malachite green dye is widely used in food and textile industries for various purposes and also used as biocide in the aquaculture industry to control fungal attacks and protozoan infections. Surface and ground water is contaminated by dyes due to discharge of untreated wastewater from industries. The presence of malachite green in water causes serious health effects such as mutagenesis, re...
متن کاملKinetics study of photocatalytic decolorization of Diamond green B in the presence of titanium dioxide nano particles
The photocatalytic degradation of Diamond green B, a triarylmethane dye, has been investigated in aqueous heterogeneous solutions containing TiO2 nano- particles as photocatalysts. The factors effective on the degradation of Diamond green B, such as the amount of catalyst, the original concentration of dye, the effect of pH and illumination time were investigated under 400 W high pressure mercu...
متن کاملRoutine fluorescence in situ hybridization in soil.
The use of fluorescence in situ hybridization (FISH) to identify and enumerate soil bacteria has long been hampered by the autofluorescence of soil particles masking the bacterial signals and because the need of counting hundreds of bacteria in order to achieve statistically reliable data is time consuming. Recently, it was demonstrated that Nycodenz facilitates FISH in soil by concentrating ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microbiological methods
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2004